Rules For Assigning Oxidation States

1. For free elements the oxidation state is zero.

e.g. $Fe(s), O_2(g), O_3(g), H_2(g), Hg(l), Hg(g), S(s)$ etc.

- 2. For monoatomic ions, the oxidation state is given by the charge on the ion. e.g. Cl^{-} (-1), Fe^{2+} (+2), Fe^{3+} (+3), S^{2-} (-2), Ca^{2+} (+2), H^{+} (+1) etc
- 3. Certain elements when present in compounds have common oxidation states.
 - a) alkali metals (Li⁺, Na⁺, K⁺) are always +1
 - b) alkali earth metals (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺) are always +2
 - c) hydrogen is +1 (except in metal hydride compounds such as LiH)
 - d) oxygen is -2 (except in peroxides such as H_2O_2)
 - e) halogens (F⁻, Cl⁻, Br⁻, I⁻) are usually -1
- 4. The sum of the oxidation states in a molecule is zero.

e.g. CH_2O (0) + 2(+1) + (-2) = 0 CH₃OH (+2) + 3(+1) + (-2) + (+1) = 0

5. The sum of the oxidation states in an ion is equal to the charge on the ion.

e.g.	$CH_3CH_2O^2$	(-3) + 3(+1) + (-1) + 2(+1) + (-2) = -1
	CH ₃ CO ₂ -	(-3) + 3(+1) + (+3) + 2(-2) = -1

Organic Compounds:

Assigning oxidation states to organic compounds proceeds by a process of deduction, in which bonds are hypothetically broken removing the more electronegative atom with the corresponding electron pairs. Proceed to remove all atoms around carbon assigning oxidation states to H (+1), O (-2) and halogens (-1) until oxidation state of the central carbon atom in determined. For bonds between identical elements (eg. C-C), the bond is broken homolytically, in which case no contribution is made to the oxidation state.

Note: Oxidation corresponds to an increase in the oxidation state and reduction corresponds to a decrease in the oxidation state.

Sample Exercises:

- 1. Determine the oxidation states for all of the atoms in each of the following:
- a) CH₃SCH₃ (dimethyl sulfide)
- b) Cl₃CCO₂H (trichloroacetic acid)
- c) CH₃NO₂ (nitromethane)
- d) C₆H₅SO₃H (benzenesulfonic acid)

2. Indicate whether the following processes involve oxidation or reduction and indicate the number of electrons transferred in each case.

