Rules For Assigning Oxidation States

1. For free elements the oxidation state is zero.

$$
\text { e.g. } \quad \mathrm{Fe}(\mathrm{~s}), \mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{3}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Hg}(\mathrm{l}), \mathrm{Hg}(\mathrm{~g}), \mathrm{S}(\mathrm{~s}) \text { etc. }
$$

2. For monoatomic ions, the oxidation state is given by the charge on the ion.

$$
\text { e.g. } \quad \mathrm{Cl}^{-}(-1), \mathrm{Fe}^{2+}(+2), \mathrm{Fe}^{3+}(+3), \mathrm{S}^{2-}(-2), \mathrm{Ca}^{2+}(+2), \mathrm{H}^{+}(+1) \text { etc }
$$

3. Certain elements when present in compounds have common oxidation states.
a) alkali metals $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}\right)$are always $+\mathbf{1}$
b) alkali earth metals $\left(\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right)$ are always +2
c) hydrogen is $\mathbf{+ 1}$ (except in metal hydride compounds such as LiH)
d) oxygen is -2 (except in peroxides such as $\mathrm{H}_{2} \mathrm{O}_{2}$)
e) halogens ($\left.\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$are usually $\mathbf{- 1}$
4. The sum of the oxidation states in a molecule is zero.
e.g. $\mathrm{CH}_{2} \mathrm{O}$
$(\mathbf{0})+2(+1)+(-2)=0$
$\mathrm{CH}_{3} \mathrm{OH}$
$(+2)+3(+1)+(-2)+(+1)=0$
5. The sum of the oxidation states in an ion is equal to the charge on the ion.

$$
\begin{array}{lll}
\text { e.g. } & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-} & (-\mathbf{3})+3(+\mathbf{1})+(-\mathbf{1})+2(+\mathbf{1})+(-2)=-1 \\
& \mathrm{CH}_{3} \mathrm{CO}_{2^{-}} & (-\mathbf{3})+3(+\mathbf{1})+(+3)+2(-2)=-1
\end{array}
$$

Organic Compounds:

Assigning oxidation states to organic compounds proceeds by a process of deduction, in which bonds are hypothetically broken removing the more electronegative atom with the corresponding electron pairs. Proceed to remove all atoms around carbon assigning oxidation states to $\mathrm{H}(+1), \mathrm{O}$ (-2) and halogens (-1) until oxidation state of the central carbon atom in determined. For bonds between identical elements (eg. C-C), the bond is broken homolytically, in which case no contribution is made to the oxidation state.

Note: Oxidation corresponds to an increase in the oxidation state and reduction corresponds to a decrease in the oxidation state.

Sample Exercises:

1. Determine the oxidation states for all of the atoms in each of the following:
a) $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ (dimethyl sulfide)
b) $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ (trichloroacetic acid)
c) $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (nitromethane)
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$ (benzenesulfonic acid)

2. Indicate whether the following processes involve oxidation or reduction and indicate the number of electrons transferred in each case.

