Hammett Equation - Brief Summary - the equation works for both reactions and equilibira - the equation is: $log(k_x/k_H) = \rho \sigma$ for reactions, where k is the rate constant - the equation is: log(K $_{\! X}/K_{\! H})$ = $\rho\sigma$ for equilibria, where K is the eq. constant - σ is the substituent constant: for X = H, σ = 0.0 where $\sigma > 0$, X is electron withdrawing where $\sigma < 0$, X is electron donating - σ is position dependent: *meta* groups act only by induction *para* groups also act by resonance - ρ is the reaction constant; for benzoic acid ionization in water at 25 °C the reaction constant is defined as $1.00\,$ - ρ is sensitive to reaction conditions such as temperature & solvent - where ρ is > 0, the process is aided by electron withdrawing groups - where ρ is < 0, the process is aided by electron donating groups - the absolute value of ρ indicates if the process is more ($|\rho| > 1$) or less ($|\rho| < 1$) sensitive to the electronic effect of the group than the references reaction - when the charge on the reacting centre can be delocalized onto the substituent, the σ values are modified: - σ^+ for reactions with positive charges σ^- for reactions with negative charges