Climate Change: Surface Temperatures and Greenhouse Gases

Balancing the incoming captured solar energy, $((1-A)\Omega/4)$ with the energy emitted from the Earth (σT^4) allows us to calculate a steady state temperature of 255 K (~ 35 degrees Kelvin) below the Earth's actual average temperature of ~290 K. This discrepancy is accounted for by the presence of IR absorbing gases in the atmosphere $(\mathbf{H_2O}, \mathbf{CO_2}, \mathbf{O_3}, \mathbf{CH_4}, \mathbf{N_2O})$. Although these gases are transparent to visible light, they absorb radiation in the IR region where the Earth emits 'blackbody' radiation. To correct for the presence of this co-called 'greenhouse effect' the equation for the overall energy balance is given by;

$$\sigma T^4 = \frac{(1-A)\Omega}{4} + \Delta E$$

where:

 σ is the Stefan – Boltzmann constant (5.67 x 10 $^{\text{-8}}$ W m $^{\text{-2}}$ K $^{\text{-4}})$

A is the Earth's albedo – the fraction of the solar radiation reflected from the Earth (0.3)

 Ω is the solar flux (1372 W $\mbox{m}^{-2})$ and

 ΔE is the magnitude of the 'greenhouse effect'

1. What would be the Earth's atmospheric temperature if the magnitude of the greenhouse effect (ΔE) is increased by 10%?

[Answer; T = 290.7 K]

Solution; first we must calculate the magnitude of ΔE term. to do this, we will need to use current conditions T=288 K A=0.30

If this were to increase by 10% $\Delta E = 150 \frac{W}{m^2} - 7 165 \frac{W}{m^2}$

Calc. new temp.

$$T = \left[\frac{(1-A)N}{4} + \Delta E \right]^{\frac{1}{4}} = \left[\frac{405 \frac{W}{m^2}}{5.67 \times 10^{-8} \frac{W}{m^2 \text{ K}^4}} \right]^{\frac{1}{4}}$$

= 290.7 K

is 2.7°C global annual average.

2. What was the change in the Earth's *albedo* resulted from the eruption of Mt. Tambora in 1816, if the average temperature in the Northern Hemisphere dropped by 0.60 °C?

[Answer; $\Delta A = 0.005$]

This temperature decrease was observed in the N. hernisphere only where the aerosols were dispersed. Therefore, the global average temperature decrease was 0.30°C.

$$\sigma T^{4} = \frac{(1-A)\Omega}{4} + \Delta E$$

where $T = 287.7 \text{ K}$ and $\Delta E = 149.98 \frac{W}{m^{2}}$

$$\frac{(-A)}{\sqrt{1-A}} = \frac{(-74 - \Delta E)}{\sqrt{1-A}} =$$

$$= 0.6953$$

so
$$\Delta A = 0.0047$$

note that such a small change in albedo
has observable effect on temperature.

3. An empirical relationship between atmospheric CO_2 concentration and ΔE (the magnitude of the greenhouse effect in W m⁻²) is given by;

$$\Delta E = 133.26 + 0.044$$
[**CO**₂]

where [CO₂] is the atmospheric concentration of CO₂ in ppm. If the ambient atmospheric CO₂ concentration and albedo were increasing at 0.2% per year, what would the Earth's average temperature be in 100 years?

[Answer; T = 284.8 K]

Starting with CO2 cone of 380 ppmv in creasing at 0.2% yr' over 100 yrs gives CO2 zone of 456 ppmv. The albedo will increase from 0.30 - 0.36 over this 100 yrs speriod.

So
$$T = \frac{(1-A)\sqrt{4} + \Delta E}{\sigma} = \frac{(1-A)\sqrt{4} + \Delta E}{\sigma} = \frac{(1-0.36)}{4} = \frac{1372}{4} = \frac{153.32}{5.67} = \frac{153.32}{4} = \frac{153.$$

overall cooling effect if both CO2 and A are increasing by the same 0.2% yr-1